169 research outputs found

    Symmetry perspectives on some auxetic body-bar frameworks

    Get PDF
    Scalar mobility counting rules and their symmetry extensions are reviewed for finite frameworks and also for infinite periodic frameworks of the bar-and-joint, body-joint and body-bar types. A recently published symmetry criterion for the existence of equiauxetic character of an infinite framework is applied to two long known but apparently little studied hinged-hexagon frameworks, and is shown to detect auxetic behaviour in both. In contrast, for double-link frameworks based on triangular and square tessellations, other affine deformations can mix with the isotropic expansion mode.P.W. Fowler acknowledges support from the Royal Society/Leverhulme Trust in the form of a Senior Research Fellowship for 2013. T. Tarnai is grateful for financial support under OKTA grant K81146.This is the final published version distributed under a Creative Commons Attribution License, which can also be found on the publisher's website at: http://www.mdpi.com/2073-8994/6/2/36

    Symmetry as a sufficient condition for a finite flex

    Full text link
    We show that if the joints of a bar and joint framework (G,p)(G,p) are positioned as `generically' as possible subject to given symmetry constraints and (G,p)(G,p) possesses a `fully-symmetric' infinitesimal flex (i.e., the velocity vectors of the infinitesimal flex remain unaltered under all symmetry operations of (G,p)(G,p)), then (G,p)(G,p) also possesses a finite flex which preserves the symmetry of (G,p)(G,p) throughout the path. This and other related results are obtained by symmetrizing techniques described by L. Asimov and B. Roth in their paper `The Rigidity Of Graphs' from 1978 and by using the fact that the rigidity matrix of a symmetric framework can be transformed into a block-diagonalized form by means of group representation theory. The finite flexes that can be detected with these symmetry-based methods can in general not be found with the analogous non-symmetric methods.Comment: 26 pages, 10 figure

    Equiauxetic Hinged Archimedean Tilings

    Get PDF
    There is increasing interest in two-dimensional and quasi-two-dimensional materials and metamaterials for applications in chemistry, physics and engineering. Some of these applications are driven by the possible auxetic properties of such materials. Auxetic frameworks expand along one direction when subjected to a perpendicular stretching force. An equiauxetic framework has a unique mechanism of expansion (an equiauxetic mode) where the symmetry forces a Poisson’s ratio of −1. Hinged tilings offer opportunities for the design of auxetic and equiauxetic frameworks in 2D, and generic auxetic behaviour can often be detected using a symmetry extension of the scalar counting rule for mobility of periodic body-bar systems. Hinged frameworks based on Archimedean tilings of the plane are considered here. It is known that the regular hexagonal tiling, {63}, leads to an equiauxetic framework for both single-link and double-link connections between the tiles. For single-link connections, three Archimedean tilings considered as hinged body-bar frameworks are found here to be equiauxetic: these are {3.122}, {4.6.12}, and {4.82}. For double-link connections, three Archimedean tilings considered as hinged body-bar frameworks are found to be equiauxetic: these are {34.6}, {32.4.3.4}, and {3.6.3.6}.NKFI

    Charge distribution in two-dimensional electrostatics

    Full text link
    We examine the stability of ringlike configurations of N charges on a plane interacting through the potential V(z1,...,zN)=izi2i<jlnzizj2V(z_1,...,z_N)=\sum_i |z_i|^2-\sum_{i<j} ln|z_i-z_j|^2. We interpret the equilibrium distributions in terms of a shell model and compare predictions of the model with the results of numerical simulations for systems with up to 100 particles.Comment: LaTe

    The orbit rigidity matrix of a symmetric framework

    Full text link
    A number of recent papers have studied when symmetry causes frameworks on a graph to become infinitesimally flexible, or stressed, and when it has no impact. A number of other recent papers have studied special classes of frameworks on generically rigid graphs which are finite mechanisms. Here we introduce a new tool, the orbit matrix, which connects these two areas and provides a matrix representation for fully symmetric infinitesimal flexes, and fully symmetric stresses of symmetric frameworks. The orbit matrix is a true analog of the standard rigidity matrix for general frameworks, and its analysis gives important insights into questions about the flexibility and rigidity of classes of symmetric frameworks, in all dimensions. With this narrower focus on fully symmetric infinitesimal motions, comes the power to predict symmetry-preserving finite mechanisms - giving a simplified analysis which covers a wide range of the known mechanisms, and generalizes the classes of known mechanisms. This initial exploration of the properties of the orbit matrix also opens up a number of new questions and possible extensions of the previous results, including transfer of symmetry based results from Euclidean space to spherical, hyperbolic, and some other metrics with shared symmetry groups and underlying projective geometry.Comment: 41 pages, 12 figure

    Nuclear dependence of the transverse single-spin asymmetry in the production of charged hadrons at forward rapidity in polarized p+pp+p, p+p+Al, and p+p+Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV

    Get PDF
    We report on the nuclear dependence of transverse single-spin asymmetries (TSSAs) in the production of positively-charged hadrons in polarized p+pp^{\uparrow}+p, p+p^{\uparrow}+Al and p+p^{\uparrow}+Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV. The measurements have been performed at forward rapidity (1.4<η<2.41.4<\eta<2.4) over the range of 1.8<pT<7.01.8<p_{T}<7.0 GeV/c/c and 0.1<xF<0.20.1<x_{F}<0.2. We observed a positive asymmetry ANA_{N} for positively-charged hadrons in \polpp collisions, and a significantly reduced asymmetry in pp^{\uparrow}+AA collisions. These results reveal a nuclear dependence of charged hadron ANA_N in a regime where perturbative techniques are relevant. These results provide new opportunities to use \polpA collisions as a tool to investigate the rich phenomena behind TSSAs in hadronic collisions and to use TSSA as a new handle in studying small-system collisions.Comment: 303 authors from 66 institutions, 9 pages, 2 figures, 1 table. v1 is version accepted for publication in Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore